Extensions 1→N→G→Q→1 with N=C3xC15 and Q=C23

Direct product G=NxQ with N=C3xC15 and Q=C23
dρLabelID
C2xC6xC30360C2xC6xC30360,162

Semidirect products G=N:Q with N=C3xC15 and Q=C23
extensionφ:Q→Aut NdρLabelID
(C3xC15):C23 = S32xD5φ: C23/C1C23 ⊆ Aut C3xC15308+(C3xC15):C2^3360,137
(C3xC15):2C23 = S3xC6xD5φ: C23/C2C22 ⊆ Aut C3xC15604(C3xC15):2C2^3360,151
(C3xC15):3C23 = C2xD5xC3:S3φ: C23/C2C22 ⊆ Aut C3xC1590(C3xC15):3C2^3360,152
(C3xC15):4C23 = C2xS3xD15φ: C23/C2C22 ⊆ Aut C3xC15604+(C3xC15):4C2^3360,154
(C3xC15):5C23 = C2xD15:S3φ: C23/C2C22 ⊆ Aut C3xC15604(C3xC15):5C2^3360,155
(C3xC15):6C23 = S32xC10φ: C23/C2C22 ⊆ Aut C3xC15604(C3xC15):6C2^3360,153
(C3xC15):7C23 = C22xC3:D15φ: C23/C22C2 ⊆ Aut C3xC15180(C3xC15):7C2^3360,161
(C3xC15):8C23 = C2xC6xD15φ: C23/C22C2 ⊆ Aut C3xC15120(C3xC15):8C2^3360,159
(C3xC15):9C23 = D5xC62φ: C23/C22C2 ⊆ Aut C3xC15180(C3xC15):9C2^3360,157
(C3xC15):10C23 = S3xC2xC30φ: C23/C22C2 ⊆ Aut C3xC15120(C3xC15):10C2^3360,158
(C3xC15):11C23 = C3:S3xC2xC10φ: C23/C22C2 ⊆ Aut C3xC15180(C3xC15):11C2^3360,160


׿
x
:
Z
F
o
wr
Q
<